Childhood Cancer Data Initiative Annual Symposium (Abstract Registration): Submission #58
Submission information
Submission Number: 58
Submission ID: 150485
Submission UUID: 23993711-100d-4651-8a73-25592ea841e0
Submission URI: /nci/ccdisymposium/abstract
Created: Mon, 09/01/2025 - 15:57
Completed: Mon, 09/01/2025 - 16:02
Changed: Mon, 09/01/2025 - 16:02
Remote IP address: 10.208.24.230
Submitted by: Anonymous
Language: English
Is draft: No
serial: '58' sid: '150485' uuid: 23993711-100d-4651-8a73-25592ea841e0 uri: /nci/ccdisymposium/abstract created: '1756756631' completed: '1756756928' changed: '1756756928' in_draft: '0' current_page: '' remote_addr: 10.208.24.230 uid: '0' langcode: en webform_id: ccdi_symposium_abstract entity_type: node entity_id: '2139' locked: '0' sticky: '0' notes: '' metatag: meta data: authors_: - add_author_degree: '' add_author_first_name: Emon add_author_last_name: Nasajpour add_author_middle: '' add_author_organization: 'Stanford University' - add_author_degree: '' add_author_first_name: Dena add_author_last_name: Panovska add_author_middle: '' add_author_organization: 'Stanford University' - add_author_degree: '' add_author_first_name: Ruolun add_author_last_name: Wei add_author_middle: '' add_author_organization: 'Stanford University' - add_author_degree: '' add_author_first_name: 'Conrado ' add_author_last_name: Soria add_author_middle: '' add_author_organization: 'Frederick National Laboratory for Cancer Research' - add_author_degree: '' add_author_first_name: Eva add_author_last_name: Tonsing-Carter add_author_middle: '' add_author_organization: 'National Cancer Institute' - add_author_degree: '' add_author_first_name: Julyann add_author_last_name: Perez-Mayoral add_author_middle: '' add_author_organization: 'National Cancer Institute' - add_author_degree: '' add_author_first_name: Louis add_author_last_name: Staudt add_author_middle: '' add_author_organization: 'National Cancer Institute' - add_author_degree: '' add_author_first_name: 'Calvin ' add_author_last_name: Kuo add_author_middle: '' add_author_organization: 'Stanford University' - add_author_degree: '' add_author_first_name: Daniela add_author_last_name: Gerhard add_author_middle: '' add_author_organization: 'National Cancer Institute' - add_author_degree: '' add_author_first_name: Melissa add_author_last_name: Porter add_author_middle: '' add_author_organization: 'National Cancer Institute' - add_author_degree: '' add_author_first_name: Rachana add_author_last_name: Agarwal add_author_middle: '' add_author_organization: 'Frederick National Laboratory for Cancer Research' - add_author_degree: '' add_author_first_name: Claudia add_author_last_name: Petritsch add_author_middle: K add_author_organization: 'Stanford University' abstract: |+ The Human Cancer Models Initiative (HCMI) is a global initiative founded by the National Cancer Institute (NCI), Cancer Research UK, Wellcome Sanger Institute, and the foundation Hubrecht Organoid Technology. The mission is to generate patient-derived Next-generation Cancer Models (NGCMs) from diverse tumor types, including rare adult and pediatric cancers, as a community resource. Unlike traditional cancer models, NGCMs are cultured under optimized conditions that better preserve the characteristics of the parental tumors. This preservation is validated through molecular and phenotypic analyses of tumor tissue and models, which are shared with the community alongside standard operating procedures (SOPs), informed consent templates, and clinical data case report forms (CRFs). The Stanford University Cancer Model Development Center (referred to as STAN CMDCs) is one of several CMDCs that ensure the integrity and quality of this initiative. STAN CMDC is dedicated to pediatric solid tumors, emphasizing central nervous system (CNS) tumors, the leading cause of cancer-related death in children. We developed a standardized bioprocessing pipeline which yielded a functional tumor bank, achieving a 60-70% success rate in establishing NGCMs for long-term passaging. We have successfully generated and submitted 85 NGCMs along with case-associated clinical and biospecimen data, as well as internal QC data validating the derived cancer models. These models partially capture the heterogeneity of pediatric CNS tumors, neuroblastoma, hepatoblastoma, Wilms tumor, and brain metastases from neuroblastoma and rare sarcoma-related cancers. Longitudinal biobanking has identified and characterized novel onco-fusion proteins, rare tumor entities, and recurrences, thereby enhancing therapeutic efficacy and promoting personalized treatment strategies. abstract_title_: 'Next-generation cancer models for pediatric solid cancer. ' email_address_: cpetri@stanford.edu institution_: 'Stanford University' presenting_author_: 'Claudia K Petritsch'