

Two Upcoming CWIG Galaxy Talks

Today's talk:

- What is Galaxy?
- Applications of Galaxy in Cancer Informatics

Next Month:

 Dr. Enis Afgan will present a demonstration of using Galaxy with software containers and workflows

Outline

The Galaxy Platform

Machine Learning Applications for Cancer

An Interactive Hub for Multiplex Tissue Image Analysis

How to Maximize the Value of Data-Intensive Science

Accessibility — Empower scientists regardless of informatics expertise

 Data-intensive science requires use of large datasets, computational resources, and analysis methods

Reproducibility — Ensure that data-intensive analyses are high-quality

Critical for advancing science, including peer review, validation, and extension

Communication — Clearly sharing what has been done with others

Multiple levels of information are needed from broad overview down to essential details

What is Galaxy?

Different things to different communities

Galaxy user communities

- Scientists
- Tool Developers
- Educators
- Service Providers

Key Features of Galaxy

- GUI for interactively running analysis tools on biomedical datasets
- ► Toolshed with 1,000s of tools ready to run
- Full featured workflow functionality
- Graphical interface for handling >1,000 samples
- Run Jupyter, RStudio, and other Interactive Tools for custom analyses
- Extensive training tutorials and infrastructure
- ▶ 6TB of latest, curated reference data

...all accessible via a Web browser or the command line and can be used with:

- Your own laptop
- Public high performance computational infrastructure
- Institutional computing resources
- Commercial cloud platforms

...created and supported by a large international community of scientists, developers, service providers, and educators

http://galaxyproject.org

Interfaces

Web UI

Programmatic API

Integrate datasets, analysis tools, visualizations, and computing resources for largescale biomedical data science

Datasets

Analysis Tools and Visualizations

Computing Resources

Galaxy is Widely Cited

Galaxy Toolshed

The Galaxy User Interface Makes Everything Accessible

Accessible yet powerful

All analysis functionality is available from the Web

Many recent advances that increase the power and flexibility of the user interface:

- Collections
- Workflow reports

Reproducibility is Central to the Galaxy Framework

The software framework, tools, and utilities are all open-source

All parameters are recorded for all analyses and stored in Galaxy's database

This is true for both individual tool executions and multi-step workflows

The Galaxy Reproducibility Stack

Layers of reproducibility built on virtualization technologies

Used for automated dependency resolution in Galaxy

Grüning et al. (2018) Cell Systems

There are Many Ways to Communicate in Galaxy

All Galaxy tools, histories, workflows, and visualizations can be shared via a web link

- Can share with everyone or particular users
- Can include in publications

Workflow reports make it possible to generate summaries of complex analyses

Importing/exporting:

- Galaxy histories can be imported/exported for archival
- Galaxy workflows can be exported and shared for archival
- Increasing support for Common Workflow Language (CWL)

Four ways to use Galaxy

- 1. Public servers such as http://usegalaxy.org and many more at https://galaxyproject.org/use/
- 2. Your laptop or local computer
- 3. Install locally with many compute environments

4. Deploy on a cloud

The universe has many Galaxies

Usage of Three Main Public Galaxy Servers

Climate Change

Proteomics
Metabolomics
Drug Discovery
Cosmology
Image Analysis
Flow Cytometry

Natural Language

Galaxy meets key scientific needs

Scientists get:

- Web-based GUI with thousands of tools to create complex analysis workflows
- Single, shared platform for computational and noncomputational users

Developers get:

- Access to thousands of users
- Easy to connect new tools/visualizations with other tools/ visualizations

Service providers get:

- Efficient use of large hardware allocations via API for local service integration
- Automated tool/dependency management

Everyone gets community support, training and advice

Galaxy Interactive Tools

Makes interactive web tools available in Galaxy

Some examples:

- Jupyter and RStudio for programmatic analyses
- CellxGene for dynamic visualization

Technical approach

- Software containers are managed by Galaxy
- Galaxy datasets can be imported and exported
- Can be included in workflows for QC and dynamic interactions

Galaxy Dataset Collections

Today's analyses often involve many samples

 Want to process all samples in the same way

Collections enable processing of datasets in the same way (map)

 Galaxy transparently runs a tool on each dataset in a collection

Also can combine many dataset into one (reduce)

Often this is datatype/analysis specific

Galaxy as part of NIH Data Science Infrastructure

NHGRI

 A Component of the AnVIL, the NHGRI Data Commons

NCI

 Developing connections to the NCI Cancer Research Data
 Commons

Key Advances

- Data-local computing is possible when Galaxy runs on commercial clouds, so no egress fees
- Substantial use of software containers and cloud service for deployment and tool execution

The Galaxy Training Network is a Fantastic Resource

The Gallantries, Galaxy Training Network & Galaxy Community are happy to announce

GTN Smörgåsbord 2 14-18 March 2022

Save the date! bit.ly/smorgasbord2

Join a **free**, **global**, week-long Galaxy Training event covering everything from RNA-Seq, Single Cell, Proteomics, SARS-CoV-2 *and more!* This year will include Galaxy Admin Training.

← Back to Events

2022 Galaxy Community Conference (GCC2022)

July 16-23, 2022

University of Minnesota, Twin Cities

Minneapolis, Minnesota, United States

#UseGalaxy2022

https://galaxyproject.org/events/gcc2022/
@galaxyproject

Outline

The Galaxy Platform

Machine Learning Applications for Cancer

An Interactive Hub for Multiplex Tissue Image Analysis

Galaxy-ML: A general purpose machine learning toolkit for Galaxy

Software Library	Applications
Scikit-learn [18]	Various approaches for preprocessing, modeling, ensembling, and evaluation
Scikit-rebate [19]	Feature selection
Imbalanced-learn [20]	Approaches for working with imbalanced datasets
XGBoost [21]	Modeling using high-performance gradient boosting with decision trees or linear models
Keras [22]	Modeling using deep learning
Mlxtend [23]	Modeling using meta-ensembles
LightGBM [28]	Modeling using gradient boosting with the LightGBM algorithm

https://doi.org/10.1371/journal.pcbi.1009014.t001

Scalable and Reproducible Machine Learning

- Thousands of model trained automatically on hundreds of datasets
- Collections are used extensively

Deep Learning in Galaxy

Building and Evaluating Transcriptional Signatures

A single gene or group of genes with a unique pattern of expression that occurs as a result of normal function, perturbation, or disease

DNA alterations alone not sufficient for precision cancer therapy

Four approaches to building signatures from bulk TCGA RNA-seq

- ► Single genes / differential gene expression
- ► Gene sets + GSVA (Hänzelmann et al., 2013)
- ► VIPER (Alvarez et al., 2016)
- Learned signatures resulting from DNA alterations (Way and Greene, 2018)

Evaluation framework is independent of signature type

- Metric #1: Accuracy on TCGA and transfer to new cohorts
- Metric #2: Association with response to therapy

Learning Transcriptional Signatures Associated with DNA Alterations

Use machine learning to identify the transcriptional signature that a DNA alteration induces

- "What does a TP53 mutation or CDKN2A loss look like at the transcriptional level?"
- Inputs: RNA-seq, Labels/predictions: DNA alterations

Very useful:

- Transcriptional state is dynamic and more closely reflects tumor activity than DNA (e.g., "hidden responders")
- Interpretable

Can learn using large cohorts without drug response data

 self/unsupervised learning very likely to be highly useful in the future

Multiple Modeling Approaches Work and Models Transfer to Other Cohorts

Learned Signatures are associated with Drug Response in Preclinical Cohorts

Associations are consistent across preclinical cohorts (cell lines + pdxs)

Learned signatures outperform others transcriptional signatures for many drugs

The Power of Adding Tools to the Galaxy Ecosystem

When a tool is integrated into Galaxy, it can be connected to all other Galaxy tools

For ML tools, this means that they can be used after primary analyses to enable end-to-end analysis

- Primary analysis: quantify features from data (e.g. variants or gene expression levels)
- ML analysis: use extracted features to build predictive model

Example: predicting age from RNA-seq data and identifying aging biomarkers

Outline

The Galaxy Platform

Machine Learning Applications for Cancer

An Interactive Hub for Multiplex Tissue Image Analysis

Cancer Moonshot NCI Human Tumor Atlas Network

https://humantumoratlas.org/

Studying key transitions

Deep Profiling

Systems Biology Understanding and Clinical Predictors

Omics and Multidimensional Spatial Atlas

Collection of longitudinal and paired biopsies for same patients

A large suite of omics and imaging assays is applied to each biopsy

Omics and imaging data is connected to clinical attributes to:

• Characterize how tumor is

- adapting to therapy Identify potential mechanisms of resistance to therapy

Multiplex Tissue Imaging

Spatial omics assays that assay FFPE create single-cell 2D/3D tumor maps

All sorts of interesting biology that can be investigated:

- Compositional information
- Spatial information such as microstructures (e.g., TLS, tumor-immune borders)

Examples: Cyclic Immunofluorescence, CODEX, IMC, Multiplex Immunohistochemistry

Analysis of Multiple Tissue Imaging Datasets

Datasets are image stacks that are tenshundreds of gigabytes

10-20 analysis steps are needed for fully processing image stacks

Two general areas:

- Primary image analysis to create single-cell datasets
- Secondary analysis of single-cell datasets

An Interactive Hub for Multiplex Tissue Imaging Analysis

GUI that **anyone** can use to run analyses and visualize data

Workflow engine for programmatic and scalable access

Extensible to incorporate a wide set of tools and visualizations

Run on both local computing resources and commercial clouds

Goal: "End-to-end" Multiplex Tissue Imaging Analysis and Visualization

 Primary analysis—from image stack to cell feature tables

Pachitariu lab

2. Downstream analysis—cell phenotyping and spatial analyses

3. Visualization

Gehlenborg lab / HuBMAP

End-to-end Multiplex Tissue Imaging Workflow

Registered Image Viewing with Viv

View image immediately in web browser and running analysis

No downloads, easy and fast even for large datasets

Review for visual QC such as registration errors

Viv: Manz et al., https://doi.org/10.31219/osf.io/wd2guhttp://viv.gehlenborglab.org/

Phenotypes + Spatial Layout with Vitessce

Three ways to identify phenotypes: gated, leiden, and LDA

Overlay cell states with raw image + channels

Lower right: immune aggregation (white) adjacent to luminal tumor cells (red and green)

Creating a Vitessce Dashboard with Galaxy

Enabling Fast and Collaborative Computational Science

Fast: When we fixed a registration issue yesterday, all analyses were rerun in a matter of hours

Collaborative: Results are available to everyone via a Web browser with no downloads, which is especially valuable for distributed teams

Observing an Immune Aggregate

Comparing Cell State Calling Approaches

Stain

Visually similar cell states calls with Leiden and Gated approaches

Leiden

Appears to be difficult to segment immune cells accurately in the immune aggregate

Gated

Concluding Thoughts

Galaxy's unique aspects in my opinion:

- Web-based UI, but this is changing
- Integrative framework for putting things together—the whole is greater than the sum of the parts
- World-wide community

Galaxy can enable tremendously powerful cancer analyses

- Self-supervised and interpretable ML models for predicting response to therapy
- Analysis of multiplexed tissue imaging datasets to create 2D tumor maps

Opportunities and challenges

- Extend Galaxy with new UIs that provide both higher and lower levels of interactions
- Integrating Galaxy with *systems* rather than tools, e.g. data management systems, model zoos, and visualization hubs like cBioPortal
- Deploying a cancer-specific Galaxy server that maximizes efficiency via use of native cloud resources

The Galaxy Community

All things Galaxy:

https://galaxyproject.org/

Public Galaxy servers:

https://galaxyproject.org/use/

Download and run Galaxy locally:

https://getgalaxy.org

Galaxy training network:

https://training.galaxyproject.org/

HTAN OMS Atlas Center

Oregon Health & Science University

Jeremy Goecks Joe Gray Gordon Mills George Thomas

Andrew Adey Courtney Betts Katie Blise Erik Burlingame Elmar Bucher

Koei Chin

Hyeyoung Cho

Lisa Coussens

Allison Creason

Emek Demir

Jenny Eng

Trevor Enright

Heidi Feiler Andrew Fields

Danielle Galipeau

Giovanney Gonzalez Xubo Song

Qiang Gu

Alexander

Guimaraes

7hi Hu

Brett Johnson

Annette Kolodzie

Terence Lo

Young Hwan Chang Hannah Manning

Shannon McWeeney

Souraya Mitri

Zahi Mitri

Jessica Riesterer

Luke Sargent

Brendan O'Connell

Byung Park

Daniel Persson

Rosalie Sears

Kiara Siex

Sam Sivagnanam

Luke Ternes

Guillaume Thibault

Nicholas Van

Marter-Sanders

Harvard Medical School/ Brigham **Women's Hospital**

Peter K. Sorger Sandro Santagata

Jia-Ren Lin Yu-An Chen Denis Schapiro Artem Sokolov Clarence Yapp Jeremy L. Muhlich Maulik Nariya Gregory J. Baker Juha Ruokonen Zoltan Maliga Connor Jacobson Alyce A. Chen Madison Tyler Jennifer Guerriero

MD Anderson

Nick Navin Yiyun Lin Emi Sei

Thank You!

