

Clinical development of immunotherapies

Marc S. Ernstoff, M.D.
Chief, ImmunoOncology Branch
Division of Cancer Treatment and Diagnosis
National Cancer Institute, NIH
Bethesda, Maryland

2021 NCI Drug Development Workshop
How to Advance A Therapeutic Candidate from Bench to
Bedside

Goals*

- Historical perspective
- Re-familiarization of the principles of Cancer Immunology
- Range of Agents
- Creating a framework for IO clinical development

* These are personal perspective and does not represent NCI policy

Historical Perspective

- Observations
- Historical Narratives

Cancer Treatment Paradigms: Theory to Therapy

Hypothesis: Radiation damage can Treat Cancer 19-20th Century

- 1896: E. Grubbe: Rx of breast cancer
- 1909: C. Regaud: Chromatin target of XRT
- 1922: H. Coutard: Fractionated XRT

Hypothesis: Surgery as curative intent 19-20th Century

- 1882: W. Halsted: Sufficient Local Removal of the tumor to cure cancer
- 1954: O. Wangensteen: Rescue benefit with metastatectomy
- 1958: B. Fisher: Cancer's metastatic behavior dictates outcome and thus less surgery is more
- 1995: S. Hellman & R. Weichselbaum: Oligometastasis hypothesis

Hypothesis: Unencumbered cell division causes cancer: Inhibit tumor cell division – Chemotherapy 20th Century

- 1940: L. Goodman & A. Gilman – Nitrogen Mustard
- 1948: S. Farber: Anti-Folate
- 1955: National Cancer Chemotherapy Service Center
- 1965: J. Holland, E. Freirech, E. Frei: Combination chemotherapy

Hypothesis: Molecular drivers of cancer: Inhibit tumor driver pathway – Targeted therapy 21st Century

- 1941: C. Huggins and C. Hodges: Testosterone inhibition CaP
- 1971: M. Cole: anti-estrogens in BrCa
- 2001: B. Druker: Inhibition of BCR-ABL by TKI in CML

Hypothesis: Immune therapy for cancer: Immune recognition and destruction of cancer– 18th - 21st Century

Immunotherapy for Cancer: Induce inflammation A 18th and 19th Century Paradigm

1768: G. White: Use of poultice made from decaying toads for breast cancer

1844: S. Tanchou: Treatise on breast cancer: spontaneously or induced Gangrene as a therapeutic agent in cancer

1886: A. Verneuil: Suppuration after surgery; Congress of Surgery Paris

1891: W.B.Coley: Annals of Surgery describing Toxins: Initially used deliberate infection and in 1893 he began combining killed *Streptococcus pyogenes* and *Serratia marcescens* ---- 1985 mammalian TLR

Dr. William B. Coley (1862-1936)
Chief of the Bone Sarcoma Unit at Memorial Hospital in New York

Historical Development of Interferon

- First described by Yasu-ichi Nagano and Yasuhiko Kojima 1954 reported in French (Seances Soc. Biol. Fil). - viral inhibitory factor
- Independently described by Alick Isaacs and Jean Lindenmann in 1957 (J Proc. Roy. Soc. Lond. B Biol. Sci) – coined the term interferon

1960 Space Phase I Unit: Interferon

Interferon The Room Where it Happened 1979

Mathilde Krim

Mary Lasker - \$1M
Lasker Foundation

Frank Rauscher \$1M
NCI

Jordan Guttermann
MDAC

Medical News

December 28, 1979

At year's end, what's new with interferon?

Last year the American Cancer Society (ACS) announced that it was spending \$2 million to purchase 40 billion units of interferon from the Finnish Red Cross, enough for American oncologists to study interferon's anticancer activity in about 150 patients.

on widely available. The current price is high because all present methods involve collecting interferon from supernatant fluids of cells grown in culture, a time- and space-intensive procedure.

This same problem, combined with inevitable losses

ACS commitment of
\$2M

Immunology captures the Public Interest

New York Times - July 29, 1908

ERYSIPelas GERMS AS CURE FOR CANCER

Dr. Coley's Remedy of Mixed
Toxins Makes One Disease
Cast Out the Other.

MANY CASES CURED HERE

Physician Has Used the Cure for 15
Years and Treated 430 Cases—
Probably 150 Sure Cures.

Principles of Cancer Immunology

Summary of the Hallmarks of Cancer

Activation of a T Cell

Basic Immunology: Immune Response Kinetics

Pauken & Wherry
Trends in Immunology
2015

CD4 Differentiation to Effector Cells

Hierarchical Expression of CD8 T Cell Immune Checkpoints

Exhausted CD8⁺ T Cell

- Reduced proliferative capacity
- Reduced production of effector cytokines
- Reduced cytotoxicity
- Elevated and sustained expression of multiple inhibitory receptors

Heterogeneity Model of CD8 T cells

SLEC: Short lived effector cells

Tmp: T memory precursors

Antigen (protein) Presentation

MHC = Major Histocompatibility Complex

Lipid antigens presentation to T cells through CD1 (related to the class I MHC molecules)

Central and Peripheral Tolerance

Central Tolerance

- For T cells it occurs in the thymus
- Some survive as regulatory (suppressor) T cells while others escape to peripheral tissues

Peripheral Tolerance

- Self-reactive T cells are suppressed by regulatory T cells
- CTLA-4 and PD-1, among other molecules play a role in maintaining self-reactive T cells from becoming activated (anergic)

Adopted from SITC

Immune Cycle

Locations of Immune Checkpoint Control

From Chen & Mellman

Systemic and TME Components

Tumor Immunity: Immune Surveillance & Immunoediting

Ehrlich 1909

Burnet and Thomas 1957

Schreiber 2002

BM, bone marrow; iDC, immature dendritic cell; Mφ, macrophage; SLN, sentinel lymph node; TAM, tumor-associated macrophage; TAs, tumor antigens; TDSFs, tumor-derived soluble factors; TE, effector T cell; TiDC, tumor-associated iDC; Tregs, regulatory T cells.

From FS Hodi

Range of Agents

Range of Agents:
The Landscape of Immunotherapy Targets & Agents for Cancer in 2021

<u>Adoptive</u>	<u>Depletion</u>	<u>Antibody</u>	<u>"Kines"</u>	<u>Metabolomes</u>	<u>Environ</u>	<u>Intratumoral</u>	<u>Antigens</u>
T cells	Treg	ICI	IFN α , β , & γ	Adenosine	Gut Microbio	TLRs	Targets Modification
NK cells	MDSC	BiTEs/TriTEs	IL-2	Tyrosine (IDO)	Other Microbio	oncolysates	Epigenetic Agnets
Dendritic Cells	TAMs	Conjugate	Designed		Adrenergic Stress	Chemokines	Vaccines
CD34 Cells	Lymphodeplete	Cytokine block	G- & GM-CSF		Glucocorticoid Stress	Cytokines	Germline
Genetic Mod	CAFs	Chemo block	IL-7			Genes	
Allo	Exosomes	Integrin Block	IL-12				
		ATP-idase (CD39, 73)	IL-15				
		ADCC	TNF α				
			IL-10				
			IL-4				

Engineered T cells

- Chimeric Antigen Receptor
 - Starting with Auto (Allo) T cells
 - CAR engineering
 - MHC independent
 - Receptor/Target Surface
 - Target specificity
 - Transmembrane bridge
 - Humanization of sVC domain
 - Signaling domains
 - Knockout (armored)
 - TCR
 - HLA
 - Other
- TCR T cells
 - Starting with Auto (Allo) T cells
 - Targets can be intracellular immune epitopes
 - MHC specific
 - Target specificity
 - Knockout (armored)
 - TCR
 - HLA
 - Other

Immune Checkpoints

Interactions with antigen-presenting cells that regulate T cell responses

The Immune Synapse

VISTA in the TME

(Yum & Hong 2021)

Creating a framework for IO clinical development

Combination Drug Therapy

Doroshow JH and
Simon RM 2017

Adopted from:
Frei & Freireich 1965,
Sartorelli 1969, DeVita
& Schein 1973,
Kummar 2010,
Parchmanet &
Doroshow 2016

Combination Principles

- Drugs used in combination should cause measurable tumor regressions when employed individually – **Not always the case in IO development**
- Each ought to demonstrate a different mechanism of action to minimize the development of resistance – **IO pathway dependent**
- The clinical toxicities of each compound should not overlap to permit their use in effective doses – **irAE are common across IO agents**
- Intensive intermittent treatment is preferred over continuous, low-dose therapy to enhance cytoreduction - **Maintenance of effector cell populations**
- Trial designed on systems biology: mechanistic understanding of drug action could facilitate a clinical-rial-design approach based on precise measures of biochemical heterogeneity from patient-derived materials - **Ditto for IO**

Meckel-Serres Law or Theory of Recapitulation
Ontogeny recapitulates Phylogeny (Haeckel)
Applied to Cancer Immunology (Ernstoff 2000)

Antigen → Presentation → Activation → Expansion → Regulation → Trafficking → Exhaustion → Escape → Resistance

History of Combination IOs

Regimen	Indication	Author	Year
IL-2, ATC	Mel. RCC	Rosenberg	1965
IL-2, IFNa	RCC	Atzopdien	1990
IFNa, IFNg	RCC	Ernstoff	1992
Biochemo	Mel	Ron	1994
IFNb, IL-2	RCC	Witte	1995
BiAb IFNg	Her2+	Lewis	2001
Ipi, IL-2	Mel	Marker	2005
IFNa, Vax	Mel	Mitchell	2007
IFNa, IL-2, Vax	RCC	Schwaab	2009
Ipi, gp100 Vax	Mel	Hodi	2010
Ipi, Nivo	Mel	Wolchock	2013

Dose Response Curve Considerations for IO agents

TREATMENT

THE ROOM WHERE IT HAPPENS

EFFECT

Dose Response Considerations for IO agents

Biomarker Approaches to TME

Future Directions for Checkpoint Inhibition

Single Agent Activity, in what setting, Recapitulate Immune pathways

Checkpoint Blockers & Agonists	Small Molecules	Vascular Targets	Traditional Rx XRT, ChemoRx, Target Rx	Cytokines	Intratumor	Cellular & Vaccines
Combination	Epigenetic	Vascular "Zip Code"	Immunogenic death	Inflammation	△ TME	TAg presentation
Sequence	IO Pathway targets	Normalization	IO impacts	Regulation	Abscopal	Starting Product
Resistance	△ TME	△ TME	△ TME	Migration		Product Survival
PK/PD/Toxicity	PK/PD/Toxicity	PK/PD/Toxicity	TKI regulation of IO pathway	PK/PD/Toxicity		PK/PD/Toxicity
Non classical CPs Microbiome Adrenergic R						

Future Directions: Defining and Overcoming Resistance

- Primary Resistance
- Secondary Resistance
- Resistance after treatment discontinuation

Primary vs. Secondary Resistance Clinical Data observations

PFS Landmark analysis of the most important studies in advanced melanoma

Resistance Mechanisms

Sharma et al
2017 Cell

Integrated Approach to Overcome Resistance

Clinical Data for the New Immune Therapies

The Median is not the Message: Stephen Jay Gould 1991

When diagnosed with abdominal mesothelioma he read that the 'median mortality' was eight months and concluded that most people would read such a statement as 'I will probably be dead in eight months.'

Dr. Gould's observation:

Firstly that, biologically, it is variation that is the hard reality rather than imperfect measures for a central tendency.

Secondly, that even with knowledge of prognostic features it is often difficult at diagnosis to know whether any individual is going to be to the left or right of the median. As many curves are right-skewed some patients will survive a long time, which was the case with Gould who died of another cause some years later.

Contact Marc S. Ernstoff, MD: marc.ernstoff@nih.gov

www.cancer.gov

www.cancer.gov/espanol

Extra slides

PK Interferon by route

Kirkwood, Ernstoff et al 1985

Figure 2. Pharmacokinetics of interferon alpha-2 according to route of administration and dosage in 33 patients. Serum interferon levels were measured by radioimmunoassay.

PD of Interferon

Ernstoff et al 1984

Figure 2. Human bone marrow colony-forming granulocyte-macrophage cell assay for each patient and as mean \pm SE ($n = 11$).

Ernstoff et al 1985

PD rHIL-2

PHASE I STUDY OF IL2

Fig. 1. Changes in lymphocyte number after 24-h IL2 infusions. The absolute lymphocyte count was determined for patients pre-, and 24 h post-, IL2 treatment (*Rx*). The absolute number of lymphocytes staining with OKT3 (T-lymphocytes) or Leu 12 (B-lymphocytes) is shown, as well as the OKT₄:OKT₈ ratio. \circ , 1×10^6 units of IL2 over 24 h; \bullet , 10×10^6 units of IL2 over 24 h.

Thompson JA et al 1987

IFNs acute phases

Lee and Ashkar 2018

Future Directions for Checkpoint Inhibition: Small Molecules

Therapeutic monoclonal antibodies versus small molecule therapies

Monoclonal antibodies	Small molecule therapies
Larger (~150kD); mainly extracellular	Smaller (<1 kD); able to enter cells and cross blood-brain barrier
Target-specific	Less specific
Parenteral administration	Oral administration possible
Longer dosing interval (half-life: days to weeks)	Shorter dosing interval (half-life: hours)
Not eliminated via hepatic, renal or biliary routes	Elimination via hepatic, renal and/or biliary routes
Lower risk of drug-drug interactions	Drug-drug interactions possible