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Abstract

We present Moonlight, a tool that uses multiple -omics data to discriminate between
oncogenes, tumor suppressors, and dual-role genes by leveraging context-specific gene
programs. We applied Moonlight to over 8,000 tumors from 18 cancer types and predicted
160 dual-role genes that contribute most to this effect-switching phenomenon.
We discovered that tissue type and molecular subtype indicate dual-role status.
Moonlight elucidated the underlying biological mechanisms of these genes.

Introduction

Cancer is an extremely complex disease, hallmarked by the poor regulation of critical
growth, proliferation, and apoptotic pathways. Over the last 12 years, The Cancer Genome
Atlas (TCGA) has explored the heterogeneous nature of this disease using many
high-throughput technologies.
In order to better understand the hallmarks of cancer, such as biological processes (BPs)
(e.g. proliferation, apoptosis, invasion of cells, etc.), it is critical to accurately identify
cancer-driver genes (CDGs) and their roles in specific tissues. CDGs are traditionally
classified as either oncogenes (OCGs) or tumor suppressor genes (TSGs), depending on
their role in cancer development. The gain-of-function of OCGs together with the
loss-of-function of TSGs determine the processes that control tumor formation and
development. However, certain CDGs may exhibit OCG or TSG behavior depending on
biological context, which we define as dual-role genes. In particular, we and others within
the TCGA Pan-Cancer Atlas initiative, employed 26 computational tools to identify 299
CDGs and more than 3,400 driver mutations, which represent potentially actionable
oncogenic events [1].
Although all these methods were demonstrated as effective, it remains critical to clarify the
consequences of each mutation and their link with possible underlying biological
interpretation as well as downstream effects.

Moonlight data integration and functionalities

We developed the tool Moonlight [2] which detects CDG events specific to the tumor and
tissue of origin including potential dual-role genes but also elucidates their downstream
impact. In order to accomplish this, Moonlight distills information from literature, pathways,
and multiple -omics data into a comprehensive assessment of a gene’s role and function.

Figure 1: (a) Possible input datatypes.
(b) Moonlight pipeline for discovery of
TSGs, OCGs, and dual-role genes

Moonlight [2] offers two main approaches
(expert based or machine learning) to
identify CDGs. Also, this tool potentially
shows the impact of the predicted CDGs
on multiple -omics data which may repre-
sent the mechanisms for gene inactivation
or activation.
The two approaches share three initial
steps: (i) Moonlight identifies a set of Dif-
ferentially Expressed Genes (DEGs be-
tween two conditions, then (ii) the gene ex-
pression data is used to infer a Gene Reg-
ulatory Network (GRN) with the DEGs as
vertices, and (iii) using Functional Enrich-
ment Analysis (FEA) quantifies the DEG-
BP association with a Moonlight Z-score.
Finally, we input DEGs and their GRN
to Upstream Regulatory Analysis (URA),
yielding upstream regulators of BPs medi-
ated by the DEG and its targets.

In the first approach, Pattern Recognition
Analysis (PRA) takes in two objects: (i)
URA’s output and (ii) selection of a subset
of the BP provided by the end-user. In con-
trast, if the BPs are not provided, their se-
lection is automated by a machine learn-
ing method (e.g. random forest model)
trained on gold standard OCGs-TSGs in
the second approach. In addition, Dy-
namic Recognition Analysis (DRA) detects
multiple patterns of BPs when different
conditions are selected

Moonlight case studies and published applications

Figure 2: (a) Barplot from FEA showing
the BPs significantly enriched in breast
cancer. (b) Heatmap showing top 50 pre-
dicted TSGs and OCGs in breast cancer
along with BPs regulated.

Figure 3: (a) Moonlight PRA-DRA anal-
ysis revelead pathways that are differen-
tially expressed depending on whether the
mutations affecting BRCA1 and/or BRCA2
are somatic (condition 1) or germline (con-
dition 2) in comparison versus wild-type
[3]. (b) Moonlight PRA-DRA analysis
further validated gene-expression-based
Stemness index and confirmed engage-
ment of MYC and EZH2, along with E2F3,
MTOR, and SHH in driving oncogenic ded-
ifferentiation. [4]

Software Availability

Multiple -omics data were downloaded from Genomic Data Commons (GDC) legacy
archive, normalized and analyzed using the R package TCGAbiolinks
http://bioconductor.org/packages/TCGAbiolinks/ [5]
Moonlight is freely available as an open-source R package within the Bioconductor project
at http://bioconductor.org/packages/MoonlightR/. [2]
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