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Introduction 
Deep proteomics profiling using labelled LC-MS/MS experiments has been proven to be powerful to study complex 
diseases. However, due to the dynamic nature of the discovery mass spectrometry, the generated data contain a 
substantial fraction of missing values. This poses great challenges for data analyses, as many tools, especially those for 
high dimensional data, cannot deal with missing values directly. To address this problem, the NCI-CPTAC 
Proteogenomics DREAM Challenge was carried out to develop effective imputation algorithms for labelled LC-MS/MS 
proteomics data through crowd learning. The final resulting algorithm, DreamAI, is based on an ensemble of six different 
imputation methods.This new tool will nicely enhances data analysis capabilities in proteomics research. 

NCI-CPTAC Dream Challenge: 
imputation of proteomics data 
The Challenge included a competition phase and a 
collaborative phase. In the competition phase, participants 
were invited to submit imputation algorithms trained on 
labelled LC-MS/MS proteomics data sets, and the 
performances of these algorithms were evaluated on a 
collection of test datasets generated from the CPTAC 
BRCA data. In the collaborative phase, together with the 
three winning teams from the competition phase, we further 
enhanced and integrated different imputation techniques 
and developed the final Aggregation based Imputation 
algorithm --- DreamAI 

Substantial missing rate Missing not at random 

Challenge Design 

Structure of Dream AI 

Performance of DreamAI 
•  DreamAI has better performance than the 6 individual algorithms on 

imputation of CPTAC2 OV proteomics data set (performed on samples 
produced by PNNL, and evaluated with the same replicated samples 
produced by JHU). Evaluation has been assessed by NRMSD and 
Correlation. 

•  DreamAI Imputation increased protein-rna concordance at gene level in 
CPTAC3 CCRCC proteomics data set. Concordance was estimated by the 
pairwise correlation between proteomics and gene expression 

Participants Performance 

DreamAI Imputation increases  
gene level Protein-RNA concordance  

in CPTAC3 CCRCC cohort 

DreamAI out performed all single algorithm components  
in proteomics data of CPTAC2 OV cohort 

The DeamAI R package is open source and available on Githu 
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